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Backlund transformations for the Schrodinger equation with a 
spectral dependence in the potential 

M Boiti, C Laddomada and F Pempinelli 
Dipartimento di Fisica, Universita di Lecce, Lecce, Italy, and Istituto Nazionale di Fisica 
Nucleare, Sezione di Ban, Bari, Italy 

Received 4 April 1984 

Abstract. The Schrodinger equation on the line with a potential depending linearly on the 
spectral parameter is considered. It is shown that this spectral problem admits one- 
parameter (called elementary) Backlund transformations and two-parameter (called full) 
Backlund transformations. The transformations of the spectral data under all these Back- 
lund transformations ( BTS) are explicitly computed. Different nonlinear superposition 
formulae for the different BTS considered are given and used to obtain soliton solutions 
of the evolution equations associated with the spectral problem. 

1. Introduction 

Let us consider the Schrodinger equation on the line 

with a potential P + A Q  depending linearly on the spectral parameter A and P, Q 
defined on the whole real axis and decaying sufficiently fast for 1x1 +CO. 

The direct and inverse problems for this equation have been solved by Jaulent and 
Jean ( 1976a, b). Subsequently Jaulent and Miodek ( 1976) found a hierarchy of infinitely 
many, so-called, soliton equations whose Cauchy problems can be linearised by the 
use of the Inverse Scattering Transform, or Spectral Transform (ST), associated with 
(1.1) (Ablowitz and Segur 1981, Calogero and Degasperis 1982). 

This ST is also useful in the solution of the inverse problem which occurs in 
various fields of physics (transmission lines theory, electromagnetism, elasticity theory, 
geophysics) in which the inhomogeneous media are absorbing (Jaulent 1976). 

In the last decade the relevance of the Backlund transformations (BT) has been 
stressed in the study of the soliton equations and, specifically, in finding explicitly 
their soliton solutions. 

Recently, Sabatier (1983a) showed that the BTS can be used to ‘explore accurately’ 
both the space of the spectral data and of the potentials. In particular (Sabatier 
1983b, c), one can study possible bifurcations and ambiguities in the solution of the 
inverse problem, which are of physical interest. 

Therefore, both from the point of view of those who are interested in soliton 
equations and of those interested in solving the inverse problem, we are encouraged 
to study the BTS for the Jaulent-Jean-Miodek (J JM)  spectral problem. 

A two-parameter BT has already been found by Laddomada and Tu (1982). 
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In this paper we show that the x-component of this BT can be explicitly integrated 
once to yield two equations which are pure differential with respect to jz Q dx and 
purely algebraic with respect to P. 

Moreover, we derive the explicit form of the t-component of the BT for all the 
soliton equations in the hierarchy found by Jaulent and Miodek (JM). 

In § 3 we briefly rederive the known result that the Zakharov-Shabat (2s) and the 
JJM spectral problems are gauge equivalent (Jaulent and Miodek 1977). The potentials 
in the two spectral problems are related by Miura-like transformations, i.e. Riccati 
equations, that, in general, cannot be solved by quadratures. Consequently, those who 
are interested, for instance, in finding explicit solutions of the J M  soliton equations or 
in building and algebraic procedure for solving approximately the inverse problem, 
must study directly the JJM spectral problem, which is less symmetric and more involved 
to manage than the zs spectral problem. 

Moreover, in § 3, we show that this gauge equivalence can be used to derive hidden 
properties of the two spectral problems and, in § 4, we use the equivalence as a guide 
in order to derive two new simpler one-parameter BTS for the JJM spectral problem, 
which we shall call the elementary BTS of the first and second kind. The two-parameter 
BT found by Laddomada and Tu (1982) (that we call the full BT) can be obtained just 
by applying successively elementary BTS. 

In § 5 ,  by using a general procedure proposed by Boiti et a1 (1983b), we prove the 
permutability theorem for elementary and full BTS and we write explicitly the corre- 
sponding double BT, or superposition formulae, both for elementary and full BTS. 

Because the JJM spectral problem is a two-field problem one can define two 
independent transmission and reflection coefficients. In § 6 we compute how they 
transform under an elementary BT of the first and second kind and under a full BT. 

The results are analogous to those for the Schrodinger equation with a A-independent 
potential and we conclude that the procedure proposed by Sabatier for exploring the 
spaces of spectral data and potentials can be extended to the JJM spectral problem 
(Sabatier 1983~).  

In § 7 we compute the explicit solutions of the soliton equations in the J M  hierarchy 
for which the A-spectrum consists of one and two discrete eigenvalues. With a 
convenient choice of the constant of integration in the first and in the second case one 
gets kink-like soliton and bell-like soliton solutions. 

2. The full Backlund transformation 

It is convenient to write (1.1) in spinor form 

Y,, + ( P + AQ)  Y = A’ Y 
where 

y = ( Y l ,  Y z )  (2.2) 
with y I  and y 2  any two solutions of (1.1) and, successively, by putting 

and 

U = u++(P+AQ-h’)u-= UoA2+ U l h  + U, (2.4) 
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with a* = ;(a, i ia,) and ai ( i  = I ,  2,3) the 2 x 2 Pauli matrices to cast (2. I )  into the 
equivalent form 

TIT,= u9. (2.5) 

If one is interested in the JM soliton equations related to (2.5) the time dependence 
of 9 and, consequently, the time evolution of the fields P and Q are fixed by requiring 
9 to satisfy the so-called auxiliary spectral equation (Ablowitz et a1 1974) 

9 , = V 9  (2.6) 

with V a polynomial in A 
n 

V(P ,  Q ;  A ) =  C v,(P, Q)A"-'. 
I = - 2  

The integrability condition for the equations (2.5) and (2.6) 

U,-  V , + [ U ,  V]=O (2.8) 

is the so-called Lax representation (Lax 1968) for the J M  soliton equations. It has 
been explicitly solved (Laddomada and Tu 1982) furnishing the coefficients V, and the 
J M  soliton equations. 

According to a general procedure (Boiti and Tu 1982, Boiti et a1 1983a, Levi et a1 
1982), that can be interpreted as a development of the so-called dressing method 
(Zakharov 1980, Zakharov and Mikhailov 1978, Miklailov 198 I ) ,  the Backlund 
transformed p, 0 of P, Q can be generated by a non-singular 2 x 2  matrix 
gauge transformation B = B ( F ,  0, P, Q ;  A )  of 9. 

The gauge transform of 9 

. i i = B 9  (2.9) 

is required to satisfy the principal spectral equation 

qx= U* 

q, = vq, 
and the auxiliary spectral equation 

(2.10) 

(2.1 1 )  

where 
p, Q for P, Q. 

and v are obtained from U and V, respectively, by substituting in them 

It is easy to verify that B must satisfy the matrix differential equations 

B,=  OB-BU (2.12) 

B , =  v B - B V .  (2.13) 

By cross differentiating one gets 

B x t - B t x = ( O t -  V x + [ U ,  V ] ) B - B ( U t -  V,+[U, V ] )  (2.14) 

and, consequently, if the gauge B satisfies (2.12) and (2.13) and P, Q are solutions of 
the soliton equation defined by the Lax representation 

U,-  V , + [ U ,  V]=O, (2.15) 

then p, 0 are solutions of the same soliton equation induced by 

U , -  V,+[U,  q = o .  (2.16) 
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For B a polynomial of second order 

B = B , A 2 + B , A  + B ,  (2.17) 

the form of Bo, B ,  and B2 has been explicitly derived by solving (2.12) and (2.13) 
(Laddomada and Tu 1982). 

The x- and the t-components of the BT generated by the gauge B are obtained by 
equating the coefficients of A' and A in (2.12) and (2.13). Precisely, one gets for the 
x-component 

B2, = U 2 B 2 -  B2U2 (2.18) 

Bl,  = U2Bl-  Bl U2 + U , & -  B2UI (2.19) 

and for the t-component 

B2, = VnB, - B2 V,, 

B l , =  Vn-,B2-B2V,-l  +V ,BI -BlV , .  (2.21) 

(2.20) 

The t-component of the BT has a specific form for any considered equation in the 
J M  hierarchy, while the x-component has a universal character, in the sense that it is 
unchanged in form for all the equations in the hierarchy. In fact it can be considered 
as an invariance equation for the principal spectral problem. 

The explicit form of the x- and t-components is obtained, respectively, in (Lad- 
domada and Tu 1982) and in (Simone 1983). We are here interested in the x-component, 
which after one integration, can be written as follows 

(0 + Q ) x  COS 8 +2(  0 + Q)(cos O ) ,  +2( p - P )  sin 0 +(a - Q ) 4  = 0 (2.22) 

COS e(c0S o l X x  -;[(COS 0 ) ~ ~  - ( P  + P )  COS* 8 +$,e2 - sa ;  = o (2.23) 

where 

8 = ;I( 0 - Q) + 8, (2.24) 

and 

9 = I [ ( P -  P )  COS 01 4-4~~0.  (2.25) 

(Note the misprint in (15a) of Laddomada and Tu 1982.) 
I is the integral operator 

(2.26) 

and a n ,  Bo are arbitrary constants. 
By multiplying equation (2.22) by cos 0 one gets the ordinary differential equation 

(2.27) [(e + Q )  cos' 81, = 2 [ 4  sin 01, 

that can be explicitly integrated to 

4ao  sin 0, cos2 0 
4 =  sin 0 fi(Q+Q)=. (2.28) 

Therefore, by inserting this 4 into (2.22) and (2.23) we get two differential equations 
local in Z ( Q )  and I ( Q )  and algebraic in P, p. 
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It is worthwhile noting that in the case Q = 0 = 0, when the JJM spectral equation 
reduces to the usual one-dimensional Schrodinger equation, eo must be set to zero, 
(2.22) is trivially satisfied and the BT cannot be obtained in the simplified algebraic 
form in P and p. 

The matrix coefficients Bo, B ,  and B2 of the Backlund gauge B, by using this 
simplified version of the BT, can be rewritten in the following form which is local in 
I (  Q )  and I (  6 )  and independent of P, p :  

B~ = ; COS ea- (2.29) 

B ,  = -a( 0 + Q )  COS ea- +& sin eu (2.30) 

B,=;(COS e ) x ~ 3 + ~ . m - ; ~ ~ ~  e ~ + + $ ( c o s  e)-'{[(cos 16~;}(+-. (2.31) 

3. Gauge equivalence between the JaulentJean-Miodek and the Zakharov-Shabat 
spectral problems 

Let us introduce the function 

U = exp[-iZ( Q)] 

and the Miura transformation for P 

p 2  + p x  = P 

with p tending to zero at infinity. 
Then the gauge transformation 

@=E* 

with 

(3.1) 

transforms any matrix solution VI of the J J M  spectral equation (2.5) into a matrix 
solution CD of the Zakharov-Shabat ( z s )  spectral problem (Zakharov and Shabat 1979) 

C D x =  U,,@ (3.5) 

U,, = i;)>. (3.6) 

The potentials q and r are related to U and p by the equations 

(3.7) 

(3.8) 

2 v , = q v  - r  

2p = qv + rv-I. 

uzs= E , E - ' + E u E - ~ .  (3.9) 

In fact, it is easy to verify directly that 

Vice versa, once given q and r of a zs  spectral equation, the solution v (tending 
to 1 at +CO) of the Miura-like transformation (3.7) and p as defined in (3.8) furnish, 
through (3.1) and (3.2), the potentials P and Q of a gauge equivalent JJM spectral 
problem. 
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The equivalence gauge E can be used to transform the Backlund gauges B of the 
J J M  spectral problem into the Backlund gauges of the zs spectral problem according 
to the formula 

B z s =  g(A)l?BE-' (3.10) 

for Q, P and g(A) is an arbitrary 

We expect the B,, in (3.10) to be related to the Backlund gauges (see Boiti er a1 

where E is obtained from E by substituting 0, 
function of A. 

1983b) 

(3.1 1 )  

The ai's and P,'s ( i =  1,2) are arbitrary constants. The integral term I ( 4 F - q )  
satisfies the algebraic equation 

-aI  a 2 [ I (  4F - qr)I2 + 2i( alPr - a2P1) I (  4F - q r )  + ( a24 - a I q) (  a I F - a2r)  = 0 

and can be transformed into a local term. 
The Backlund transformed 4, F of q, r must be related to p, 6 by a version of the 

equations (3.1), (3.2), (3.7) and (3.8) obtained by substituting in them all quantities 
with the corresponding barred quantities. 

Since the solutions of (2.5) and (3.5) are uniquely determined by their asymptotic 
behaviour, say at x = +CO, the Backlund gauges B and Bzs are uniquely determined 
by their values at x = +W. Therefore, in order to identify the B,, in (3.10) with the 
B,, in (3.1 I ) ,  it is convenient to compare them at x = +CO. 

The identification is possible in two cases (we exclude the uninteresting case B,,a U ) .  
In the first case 

(3.12) 

a1 = a,  = 0 (3.13) 

and we get (PI  # 0, P2 # 0) 

(3.14) 

(3.15) 

In the second case 

PI = P 2  = P (3.18) 

and we get ( a ,  # 0, a,  # 0) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 
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It is relevant that the equation (3.10) contains more information than that supplied 
by the previous relations between parameters of the Backlund gauges of the JJM and 
zs spectral problems. 

In fact, in the second case (a,# 0), by equating the coefficients of the powers of 
A in both sides, after some tedious but direct computation, one gets the non-trivial 
equation 

( p s i n 2 O + ~ Q + ~ ~ c o s 2 O + 4 a 0 s i n  0,) - ( p s i n 2 0 - ~ Q - f Q c o s 2 0 - 4 a o s i n  0,) 

= -16at sin’ 0, (3.23) 

which furnishes p in terms of Q, 0 and p .  
Therefore, if two pairs of fields q, r and P, Q related by the gauge E are known 

together with the Backlund transform F, 0 of P, Q, the equation (3.23) solves explicitly 
the Riccati equation 

p2+px = F. (3.24) 

Consequently, from 

fix = 46’ - y (3.25) 

and 

2p = 46 + w-1 (3.26) 

one obtains 4 and F, the Backlund transforms of q and r. 
Vice versa, if the equation (3.23) is written in the equivalent form 

{ [ 4  exp(2i0,) +q]v2 + 8 i a o ~  sin 6,- Fexp(-ZiO,) - r } { [ Q  + q  exp(-2i0,)]B2 

+8ia,B sin O o -  P- r exp(2i0,)) 

= 16ai[u exp(i0,) - B exp(-iO0)l2 (3.27) 

it can be used to derive by a trivial algebraic procedure B in terms of q, r, 4, F and v. 
The solution thus found, 6 of the Riccati equation (3.25), substituted into the 

equation 

iQ = B J - ’ ,  (3.28) 

furnishes 0, while equation (2.22) (or (2.23)) for the BT furnishes p. 
In conclusion we can say that formula (3.23) solves explicitly the BT of the zs 

spectral problem once one has solved the BT of the JJM spectral problem (and vice 
versa-equation (3.27)). 

In the first case ( a,  = 0) the BT for the zs spectral problem is the trivial rescaling 
transformation 

4 = - 4  exp(-2i00) (3.29) 

P= - r  exp(2i6,) (3.30) 

and by equating the coefficients of the powers of A in (3.10) one gets 

jj sin 20 + t Q  +io cos 20 = 0 

p sin2O-iO-iQ cos 20 = O  

which are just the expressions in curly brackets in (3.23) evaluated at a. = 0. 

(3.31) 

(3.32) 
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In this case, since the BT q, ? of q and r are explicitly known, these equations are 
of no practical use for computing the BT of the zs spectral problem. Moreover, they 
cannot be used to derive p, Q once known q, r, 4, ? and Q, P because the equivalent 
version of (3.31) and (3.32) in terms of U and U are trivially satisfied, as one can see 
just by looking at the formulae in curly brackets in (3.27) evaluated at a ,  = 0. 

However, we shall show in 9 5 that these equations can be used to find a nonlinear 
superposition formula in the JJM case. 

4. Elementary Backlund transformations 

The equivalence between the zs and J J M  spectral problems and the existence of the 
so-called elementary Backlund transformations (Konopelchenko 1982, Calogero and 
Degasperis 1983) iri :he zs case suggest the search for elementary BTS also in the JJM 

case. 
In the zs case we call elementary BT of the first kind, the BT generated by the 

Backlund gauge obtained by choosing 

a ,  = 0 ,  a2 # 0 (4.1) 

P1=P2=P, (4.2) 

Q I  f 0, a2 = 0 (4.3) 

PI = P 2  = P (4.4) 

CY,=a,=O (4.5) 

PI + P2. (4.6) 

the elementary BT of the second kind, the BT obtained by choosing 

and elementary BT of the third kind the BT with 

The corresponding Backlund gauges for the JJM spectral problem will be indicated, 

Let us rewrite the equations (3.20)-(3.22) in the following way 
respectively, by B',  B" and B"'. 

sin Bo 1 A. 
a0 A. ~CY:  

COS eo 1 ,io -- - -i-+i7 
a0 A. 4 a 0  

-- 

with 

A o =  - P ( Q ~ ) - '  
" 0  = $( c y l  

or, alternatively, 

sin Bo 1 p0 -- 
a0 Po 4 4  

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.1 1)  

(4.12) 
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with 

p a =  -P(cyI)-I (4.13) 

cyo = :p(  c y ,  a2)-1 /* .  (4.14) 

The Backlund gauges B' and B" are obtained by taking the limit for ao, sin eo and 
cos Bo going to infinity at fixed A. using (4.7), (4.8) and, respectively, at fixed pa using 
(4.11), (4.12). 

The Backlund gauge B"' is obtained by taking cyo=O. 

Any Backlund gauge relative to the JJM spectral problem, which is a polynomial 
in A, can be obtained by applying successively elementary Backlund gauges. 

In particular, the full Backlund gauge B of 9 3 ( a. # 0) can be obtained by applying 
successively a B' and a B". This can be easily proved by showing that with a convenient 
choice of the parameters the value at x = +CO of B'B" coincides with the value at 
x = +CO of B. 

We get for B' 
B' = -1' z i A o l  exp(ir){a-A2-[iU +$(e + Q)o-]A 

+[2iAOexp(-2i7) + $ i o  +Q)]U-$(o- Q)a3-o+ 

+[aoQ - 8iAi exp(-3ir) sin 7 + A o (  0 + Q) exp(-2ir)]a-} (4.15) 

and for the corresponding BT 

i (  0 + = -2( P - P )  - $( Q 2  - 0') +4A,( 0 - Q) exp( -2ir) (4.16) 

i ( Q -  Q ) ~  = - ~ ( P + P ) - ; ( Q ' + Q ' )  +32iAiexp(-3ir) sin T - - ~ A , ( Q + Q )  exp(-2ir), 

while for B" we get 

B" =tip;' exp(-ir){a-A2+ [ili - t (  

(4.17) 

+ Q)a-]A 

-[2ip0 exp(2i.r) +$i(Q+Q)]n + t i ( @ -  Q ) V ~ - U +  

+[too +8i& exp(3ir) sin 7 +po(o  + Q )  exp(2ir)]a-} (4.18) 

and for the corresponding BT 

i ( Q  + Q ) ~  = 2 ( P -  P )  -ti(@-- 0') - 4 p O ( Q -  Q )  exp(2ir)  (4.19) 

i (Q-Q) ,=2(P+P)+~(Q2+Q2)  +32i&exp(3ir) sin 7 + 4 p 0 ( 0 + Q )  exp(2ir). 
(4.20) 

In both cases r is defined as follows 

r = i I ( Q  - Q ) .  (4.21) 

It is important to note that the difference between the equations defining the BT of 
the first kind can be cast into the form of a Riccati equation 

- p x  - p 2  + P + A , Q - A ;  = O  (4.22) 
with 

p =2iA,exp(-2ir)+fiQ-iAo. (4.23) 
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The solution p of the Riccati equation (4.22) furnishes 0 and p by means of the 

(4.24) 
formulae 

0 = Q - i (d/dx)  log( p -4iQ +iAo) 
f s = p - p  -‘i Qx -f(d2/dx2) log( p -4iQ +iho) 

+ i iQ(d/dx)  log( p - f iQ +ih,) +$(d/dx) log( p -+io +iAO)]’. (4.25) 

Analogously the BT of the second kind can be written as follows 

-uX - U *  + P  +poQ - pi=O (4.26) 

with 

U = -2ip0 e x p ( 2 i ~ )  - i iQ +ipo. (4.27) 

The solution U of the hcca t i  equation (4.26) furnishes 0 and fs via the formulae 

0= Q + i ( d / d x )  l o g ( u + ~ i Q - i p o )  (4.28) 

p = P - U, +$Q, - i (d2/dx2)  log(u +$Q - ipo) 

-$Q(d/dx)  log(u+i iQ - ipo)  +i[(d/dx) log(u+f iQ -ip0)l2. (4.29) 

We conclude that both elementary Backlund transformations can be cast into a 
form that can be considered the generalisation of the Darboux transformation to the 
case in which the potential in the Schrodinger equation depends linearly on the spectral 
parameter A. 

5. The double Backlund transformations 

The composition of two Backlund gauges B ( Q 3 ,  9 , ;  ab2’, e?)) B(Ql,  Qo; 
ab”, $b”)-or, for short, B‘,:’B\h’, where the subscripts refer to the fields and the 
superscripts to the parameters involved-is a Backlund gauge that transforms the field 
Qo into the field Q3. This can be verified by computing its x- and r-derivative by using 
(2.12) and (2.13) written successively for B$:) and B/b’. 

We shall call B$:’B‘,b’ a double Backlund gauge and its corresponding BT a double 

The Backlund gauges satisfy the so-called permutability theorem 
BT. 

(5.1) B$:)B(l) - B$i)B(2)  
I O  - 2 0 .  

Because the Backlund gauges are uniquely determined by their asymptotic value 
at x = +E, the theorem (5.1) follows from the corresponding trivial identity at x = +a. 

The permutability theorem can be expressed by saying that the diagram of figure 
1 commutes. Arrows represent BTS. 

y’  ‘v 
‘r 
f 3  

[2;‘‘‘\ /il) 

0 
\ \  

2 

Figure 1. 
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It is convenient to look first at the simpler case in which all the Backlund gauges 
involved are elementary Backlund gauges. We consider, for instance, the case represen- 
ted in the diagram of figure 2, where the BTS of the first and second kind are represented, 
respectively, by single and double lines and the parameters of the BTS are explicilty 
indicated. 

3 

O \  2 

Figure 2. 

It is easy to verify that a BT of the first kind (second) with parameter A. (pa)  is 

Consequently, the previous commuting diagram can be equivalently drawn as in 
the inverse of a BT of the second kind (first) with parameter A. (pa) .  

figures 3-5. 

Figure 3. Figure 4. Figure 5. 

We expect to get from (5.1), by identifying the powers of A on both sides, four 
nonlinear superposition formulae giving, respectively, Q3 or Qo or Q2 or Q1 in terms 
of the remaining fields as suggested by the four commuting diagrams in figures 2-5. 

In fact we get 

A 0  A0 exp(2i730) =--2-(Ao-~o)[2Aoexp(-2i~31) + 2 ~ ~ e x p ( 2 i ~ ~ J  +Q3-2go]-I (5.3) 
Po Po 

2Ao exp( - 2 i ~ ~ ~ )  - 2p0 exp(2i~, , )  + Q., - Qo 
2Ao e x p ( - 2 i ~ , ~ )  -2p0 exp(2 i~ , , )  

e x p ( - 2 i ~ ~ ~ )  = 

2p0 e x p ( 2 i ~ ~ ~ )  - 2Ao exp( - 2 i ~ ~ ~ )  + Q3 - Qo 

 PO e x p ( 2 i ~ ~ ~ )  - 2Ao exp(-2i~,,) 
e x p ( 2 i ~ ~ ~ )  = 

(5.4) 

( 5 . 5 )  

where 

~q = $1 ( Q i  - Qj * (5.6) 
If the Q, ( i  = 0, 1,2,3) are considered as independent fields it is easy to show that 

only two superposition formulae are independent. We can choose, for instance, the 
first two. 
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If one applies the permutability theorem (5.1) to the full Backlund gauge 
B ( 0 ,  Q ;  cyo, e,) defined in (2.29)-(2.31), the computations become very complicated 
and tedious (a  preliminary study has been made by Simone 1983). However, the 
resulting superposition formula obtained by identifying the coefficients of the powers 
of A in (5.1) can be cast in the following rather symmetric form 

( A  + B)’ + C 
( A  + B’)2 + C’ exp(-2i~,,) = exp(2ieb” +2i@) (5.7) 

where 

A=Q[Q, sin(202)- Q2 sin(26,) +Qosin(28,-28,)] 

B = a t )  sin 6;” cos 19, sin(28,) exp(-iO,) - (1 -2) 

c =[ab” sine;” sin e ,  sin(20,) exp(-ie,) - ( I  ++2)12 

(5.8) 

(5.9) 

-4i[a;’” cos O2 sin2 e, sin2 8, sin( 0 2 -  e , )  exp(-ie,) +( 1 -2)] 

e 2 -I - * I (  Q2 - Qo)  + e?’ 
e ,  =+I( Q~ - Q ~ )  + e;” 

(5.10) 

with 

(5.1 1) 

(5.12) 

B‘ and C‘ are obtained from B and C, respectively, changing i into -i. 
All the previously obtained superposition formulae can be derived, as special cases 

of this formula, by computing the appropriate limit for a:’ and ab2) going to infinity. 
For instance, by writing 

and 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

and by taking the limit ab”+ cc and a f ) + a  one gets the superposition formula (5.2). 
The second independent superposition formula (5.3) can be obtained simply by noting 
that the diagram in figure 3 is the same as the diagram in figure 2 once the fields and 
the parameters of the BTS have been renamed appropriately. 

Formula (5.7) can also be used to get the superposition formula related to the 
composition of two B”’, of a B”’ with a B’ and a B”’ with a B”. 

In the first case, because at ab’’ = ab2’ = 0 the numerator and the denominator in 
the right-hand side of (5.7) are equal and because, in general, exp(-2i~, ,)+ 
exp(2iB;’ +2ief ) ) ,  we deduce that they must be zero. More precisely, we get 

~ , s i n ( 2 ~ , ,  +2ei2l-2e5I)) s in(2~, ,+20b~’)-  Q~ sin(2~, ,+20b”)  = o .  (5.17) 

It is worthwhile noting that this equation can be obtained directly from (3.32) 
written for the two BTS generated by B;! and Byd. 

By taking into account that B( 0, Q ;  0, 0,) is gauge equivalent to the Bz,= 
+(U +a,)@, +;(I - a,)@,, whose inverse is B& = ;(U +a3)p; ’  +;(I - a,)@;’, and the for- 
mulae (3.16), (3.17) relating Bo to @, and @,, it is easy to prove that 

B-’ (Q ,  Q ; O ,  ~ , ) = B ( Q , Q ; o , - ~ , + ~ ) .  (5.18) 
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Consequently, the two diagrams in figures 6 and 7, in which a triple line indicates 
a BT of the third kind, relate the same fields. 

Figure 6.  Figure 7. 

Therefore from (5.17) applied to the second diagram we get the second independent 

(5.19) 

In a similar way one can get the superposition formulae relative to the double BT 

superposition formula relative to the double BT generated by composing two B"', 
o3 s i n ( 2 ~ ~ ~ + 2 e b l ) - 2 e ~ * ) )  +Q* sin(2~,,-20b*')- Q,  s i n ( 2 ~ ~ , - 2 e g ' ) = 0 .  

generated by the gauges B"'B' and B"'B". 

6. Backlund transformations of the spectral data 

Let us consider the JJM spectral problem in the equivalent form (2.5) of a first-order 
linear spectral problem and define right F* and left F -  matrix Jost solutions ( A  real) 

F*(x, A ) +  W(x, A )  as x + *a2 (6.1) 
by 

where 
exp(-ihx) exp(iAx) 

-iA exp(-iAx) ih  exp(iAx) 
W(X, A )  = 

P and Q are supposed to vanish at infinity sufficiently fast. 
The 'scattering matrix' 

(6.3) 

relates the right matrix Jost solution to the left matrix Jost solution 

F -  = F'S (6.4) 

and it satisfies the 'unitarity relation' 

det S =  1. (6.5) 

a ( A )  = l / T + ( h )  (6.6) 

b ( h )  = R + ( A ) / T + ( A )  (6.7) 

c ( A )  R-(-A)/  T- ( -A)  ( 6 . 8 )  

d ( A ) =  l/T-(-A). (6.9) 

In the language of Jaulent and Miodek (1976) 
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The right and left matrix Jost solutions of the JJM spectral problem relative to the 

F +  = B F + W - ' ( B + ) - '  w (6.10) 

F -  = B F -  W- ' (  B- ) - '  W (6.1 1 )  

where B' and B-  are respectively the asymptotic values of B at x = +CO and at x = --Co. 

In fact BF' and BF-  are solutions of the Backlund transformed spectral problem 

ur,= U+ (6.12) 

and W-' (  B+)- '  W, W - ' (  B-)- '  W are matrices independent of x, chosen in such a way 
as to guarantee the required asymptotic behaviour of Fr. 

defined by 

potentials p, 0, Backlund transforms of P and Q via the gauge B, are given by 

Therefore, the scattering matrix 

F -  = F'S (6.13) 

is related to the old scattering matrix S by the equation 

S =  w-~B' WSW- ' (B-) - '  w. (6.14) 

Let us consider first the elementary Backlund gauges of the first and second kind. 
In both cases from the second equation (4.17) and (4.20) in the x-component of the 
BT evaluated at x = -03, it is easy to derive that 

( Q  - Q) dx = 2 k ~  

with k E Z  to be determined. Consequently, in both cases B+= ( - l )kB- .  
In the first case (BT of first kind) we get 

or, in terms of the transmission and reflection coefficients, 

T*( * A )  = (-  l)kT*(*A) 

R * ( * A )  = R*(*A)(  1 - A/A,)*'  

with all signs * taken at the same level. 
In the case of the BT of the second kind, it results that 

d(A) =(- l )ka(A)  

6( A ) = ( - 1 ) kb ( A ) ( 1 - A / po) - ' 
?(A ) = ( -  l)kc(A)( 1 - A/pO) 

d(  A ) = (- l ) k d  ( A )  

(6.15) 

(6.16) 

(6.17) 

(6.18) 

(6.19) 

(6.20) 

(6.21) 

(6.22) 

(6.23) 

(6.24) 

(6.25) 
or 

(6.26) 

(6.27) 
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In  the case of the BT of the third kind we have no a priori information on 
+a 

T ~ = $ /  ( Q - Q ) d x  
-X  

(6.28) 

and we get 

F*(iA) = T*(*A) exp(Ti.r,) (6.29) 

R * ( * A )  = -R*(*A)  exp(*2ie0). (6.30) 

It is worthwhile noting that according to formulae (6.20) and (6.26) (apart from a 
possible sign) the two transmission coefficients T' do not change after a BT of the first 
or second kind. Therefore, these BTS are not able to add a soliton to the given solution. 

In fact, we shall see in 9 7 that the solutions corresponding to a scattering matrix 
with zero reflection coefficients and transmission coefficient T+(A)  (or T - ( A ) )  with a 
pole in the upper A-plane do not vanish at x = *-CO. 

However, it may occur (see § 7 )  that solutions corresponding to two values of A 
in the discrete spectrum, one giving a pole to T'(A)  and the other to T - ( A ) ,  have the 
required vanishing behaviour at x = *CO. 

These two poles can be obtained by using a BT generated by the full Backlund 
gauge B(Q,  Q ;  a,, 0,) where 

a. = $( A0po)1'2 (6.31) 

sin eo = -$(A, - C ~ ~ ) ( A ~ ~ ~ ) - I / *  (6.32) 

cos eo = $(Ao  - F ~ ) ( A ~ ~ ~ ) - " *  (6.33) 

In this case the value of T~ can be inferred by looking at the value of (2.23) at 

3( -a) = *4a0 (6.34) 

with Im A. < 0 and Im po > 0. 

x = --CO. I t  results that 

and, consequently, from (2.28) we get two possible cases: 

ro = krr, k E Z  (6.35) 

and 

T~ = -200 + krr, k E Z .  (6.36) 

By following a procedure analogous to that followed for the elementary BTS we 
get that the matrix elements of S transform according to the following formulae, in 
the first case, 

and, in the second case, 

(6.37) 

(6.38) 

(6.39) 

(6.40) 

(6.41) 

(6.42) 
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E (  A ) = (- 1) k t ' ~ (  A ) 

6( A )  = (-  l ) k + l d (  A ) (  pLg/Ao)( A - A o ) ( A  - /LO)- ' .  

(6.43) 

(6.44) 

In terms of the transmission and reflection coefficients we get, in the first case, 

T'( * A ) = ( -  1 )kT'( *A ) 

!?*(=A) = R'(*A){(pO/Ao)(A -&,)(A -po)-I}" 

(6.45) 

(6.46) 

and, in the second case, 

T*(*A) = ( - l ) k t ' T ' ( * A ) { ( p O / A o ) ( A  - A o ) ( A  -po) - ' } * '  

R*(+A) = R'(+A){(pO/Ao)(A - A o ) ( A  -po) - ' }= ' .  

(6.47) 

(6.48) 

7. The soliton solutions 

We call solitons the solutions of the evolution equations in the J M  hierarchy for which 
the A-spectrum consists of discrete eigenvalues. According to a well known procedure 
they can be obtained by applying recursively the elementary Backlund transformation 
to the trivial solution Q = P = 0. 

Because the BTS are algebraic in and P we shall write explicitly in the following 
only the Backlund transformed field 6. 

The BTS are local in Z(0) and, consequently, we can enlarge the set of admitted 
0 solutions by including the 0 ' s  which do  not vanish at x = -W. 

By applying the elementary BT of the second kind and of the first kind to Q = P = 0 
one gets, respectively, the solutions Q1 and Q2 corresponding to one discrete eigenvalue 
po and A. (Im po> 0, Im A,< 0) 

QI = FO exp[ipo(x - S I ) 1 / ~ o s h [ i p 0 ( ~  - 

Q2 = A. exp[-iho(x - &)]/cosh[iA,(x - &)I. 
(7.1) 

(7.2) 

The time evolution of 5' = & ( t )  and t2 = & ( t )  must be determined according to the 
specific evolution equation in the J M  hierarchy considered. For those evolution 
equations for which Im ti = 0 ( i  = I ,  2)  the solitons found are regular at any x and t 
with a kink-like behaviour. 

The soliton solution Q3 corresponding to two discrete eigenvalue po, A. (Im po> 0, 
Im A. < 0) is obtained by using the nonlinear superposition formula (5.2) 

e-2ir30 = e2'e0 cosh( y - i B 0 )  +e-' cosh(i6,) 
cosh(y+i6,) +eS cosh(i6,) ' 

a. and Bo are defined in (6.31)-(6.33), and 

y = i ( A o  - p o ) x  - i A 0 &  Sipo& 

6 = -i( A. + po)x + i A o t l  + ipOt2. 

(7.3) 

(7.4) 

(7.5) 

This soliton solution vanishes at x = *tee and is regular at any x and t for po and 

The transmission coefficients T'( A ) have a pole respectively at A = po and at A = Ao. 
A. located on the imaginary axis. 
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In fact, from (7.3), evaluated at x = -00, it is easy to show that 

70 = -2e0 + krr (7 .6)  

with k E Z to be determined and, consequently, the spectral data transform as in the 
second case discussed in § 6. 
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